On a semilinear mixed fractional heat equation driven by fractional Brownian sheet

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Delayed Logistic Equation Driven by Fractional Brownian Motion

In this paper we use the fractional stochastic integral given by Carmona et al. [1] to study a delayed logistic equation driven by fractional Brownian motion which is a generalization of the classical delayed logistic equation . We introduce an approximate method to find the explicit expression for the solution. Our proposed method can also be applied to the other models and to illustrate this,...

متن کامل

A singular stochastic differential equation driven by fractional Brownian motion∗

In this paper we study a singular stochastic differential equation driven by an additive fractional Brownian motion with Hurst parameter H > 1 2 . Under some assumptions on the drift, we show that there is a unique solution, which has moments of all orders. We also apply the techniques of Malliavin calculus to prove that the solution has an absolutely continuous law at any time t > 0.

متن کامل

Mackey-Glass equation driven by fractional Brownian motion

In this paper we introduce a fractional stochastic version of the MackeyGlass model which is a potential candidate to model objects in biology and finance. By a semimartingale approximate approach we find a semi-analytical expression for the solution.

متن کامل

Stochastic Heat Equation Driven by Fractional Noise and Local Time

The aim of this paper is to study the d-dimensional stochastic heat equation with a multiplicative Gaussian noise which is white in space and it has the covariance of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types of equations are considered. First we consider the equation in the Itô-Skorohod sense, and later in the Stratonovich sense. An explicit chaos developm...

متن کامل

On the Mixed Fractional Brownian Motion

If H = 1/2, BH is the ordinary Brownian motion denoted by B = {Bt, t ≥ 0}. Among the properties of this process, we recall the following: (i) B 0 = 0P-almost surely; (ii) for all t ≥ 0, E((B t )2)= t2H ; (iii) the increments of BH are stationary and self-similar with order H ; (iv) the trajectories of BH are almost surely continuous and not differentiable (see [7]). Let us take a and b as two r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2017

ISSN: 1687-2770

DOI: 10.1186/s13661-016-0736-y